
MULTIGRID METHODS FOR A SEMILINEAR PDE

IN THE THEORY OF PSEUDOPLASTIC FLUIDS*

Van Emden Henson

Department of Mathematics

Naval Postgraduate School

Monterey, CA

: 94-'2 689

A. W. Shaker

Department of Mathematics

Naval Postgraduate School

Monterey, CA

SUMMARY

We show that by certain transformations the boundary layer equations for the class of

non-Newtonian fluids named pseudoplastic can be generalized in the form

Au + p(x)u -_ = 0, x _ _ C R", n >_ l

under the classical conditions for steady flow over a semi-infinite flat plate. We provide a survey of

the existence, uniqueness, and analyticity of the solutions for this problem. We also establish

numerical solutions in one- and two-dimensional regions using multigrid methods.

INTRODUCTION

In the last two decades, solutions of the singular semilinear equation

Au+p(x)u -_--0, xE__ R" (1)

have been extensively studied. Various existence and uniqueness results are given in [1], [2], and [3],

to name a few. More recently, in [4], it is shown that by certain transformations the boundary layer

equations for the class of non-Newtonian fluids named #._ _tdoplastic can be generalized in the above

form for the ODE case n = 1. Under this physical interpretation the above equation, considered in

the context of partial differential equations (n > 1), has been the subject of much study. The

equation has a unique classical solution with a bounded domain f_, where p(x) is a sufficiently

regular function which is positive on (_ [5]. There exist entire solutions with )_ C (0, 1) for p(x)

sufficiently regular ([6], [7]). This is generalized to all A > 0 via the upper and lower solution

method ([8]) or other methods ([9]).
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The following sections provide a survey of both theoretical and numerical results in this area

including a physical derivation [4], existence theorems for both the ODE and PDE cases with a

proof of a main result [8], and our numerical results. We conclude with a discussion of a new

technique and some open questions for further research.

PRELIMINARIES

(gu

A non-Newtonian fluid is called ps( _tdoplastic if the shear stress 7- and the strain rate _yy are

related as

kl0 o
17-1=10yl' 0< <1

where k is a positive constant. That is, the absolute value of the shear stress increases with respect

to the absolute value of the strain rate less than linearly.

In this paper, we study solutions of the singular semilinear equation (1) where )_ > 0 and f_ is a

domain in R n, n > 1. In the following section we show that through a series of transformations the

boundary layer equations for the class of pseudoplastic fluids under the classical conditions for a

steady flow over a semi-infinite flat plate can be generalized into the well-known Blasius problem

f"'-+- ff'=O,

f(O)=f'(O)=O, f'(c_)=l

for the shear function, which arises from the standard Newtonian fluid case.

DERIVATION OF THE PROBLEM

For n = 1 equation (1) arises in the study of pseudoplastic fluids. We consider a two-dimensional

incompressible flow of low viscosity along a plane wall. We denote by _7= (u, v) as the fluid velocity

in the boundary layer and u_ (x) in the main stream. Since there is no velocity on the wall and the
c3u.

fluid takes the velocity of the main stream u_(x) outside the boundary layer, we see that _yy is

large near the wall which causes a significant transfer of momentum in the x direction.

The boundary layer equations for this model include a continuity equation and a momentum

equation in the x direction.

with boundary condtions

Ou c3u

cgu Ou 1 07-xu

u-_z + V Oy p Oy

o) =v(z,o) = o,

(2)
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Figure 1: 2-D flow of low viscosity along a plane wall.

=gOU °
where "rxu Oy is the shear stress.

Note that (2) has 2 coupled equations in 3 dependent variables, u, v, and rx_. To reduce it to a

single higher-order equation in only 1 dependent variable, we introduce the Lagrange stream

function (I)(x, y) such that
0¢ 0¢

Then the momentum equation becomes

0_ o_(I) 0¢ 02¢ 0 02¢,_ =
O'-ff " OxOy 0"-'_" Oy----_ ay- oy--

K
where u = --, while the continuity equation is clearly satisfied by ¢.

P

a(I) . b
Let f - v'U,_ux'----' 77= Y'tlv-u-xx, for some a, b. Then (3) becomes

f'"-I-f(f,,)9_-_,= 0 (4)

with

f(0) = f'(0) = 0

f'(c_) = 1

where f = f(r/). (Observe that if a = 1 (4) is the well-known Blasius equation.) Employing the
Crocco-like transformation

u = ff(rl), g(u)= u'= f"(rl)

(4) becomes

g_9 " + (a - 1)g_-l(g') 2 + u = 0
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with g'(0) = 0, g(1) = 0, where g -- g(u). Finally the transformation G = 9_ leads to the singular

boundary value problem
G" + auG -1/_ = 0, O < u,a < 1,

a'(0) =a(1)=0

1 x

of the form (el) with _ = -, u = x, p = _.O_

EXISTENCE AND UNIQUENESS RESULTS

In the first part of this section we study the results in finite and infinite domains; in the second

we discuss methods that are commonly used to approach the problem.

Theorems

Let _ be a bounded domain in R n, n > 1 with smooth boundary 0_ (of class C 2+_, 0 < a < 1).

Let p(x) be of C a(fi) and positive on _, X > 0.

Theorem 1 (Lazer-MchYn na [5]). The: problem

Au + p(x)u -_ =0, x e
u Ioa= 0

has a unique positivc solution u(x) i, f_ _L,ith u e C2+'_(f_) Cl (f_). Furthermore Ict ¢ bca,

eigenfunction eorrespondin 9 to thc .smallest eigenvalue A1 of the problem

At+At=O, xef_
¢ Io =o

such that ¢1(x) > 0 x E f't at_d .k > 1. Thc:n there exists a uniqu_ bl,b2 > 0 .such that

b _2/(1+),)
1(b'1 __ U ____52¢ 2/(1+)_)

Or/ fi,

In the case _q = R '_, n _> 1, we study the results under conditions n = 1, n = 2, n _> 3. Observe

that if n = 1, since p, y > 0, y" + py-_ = 0 we have y" > 0 and thus y' l- Hence 0 < y'(co) < oo.

Theorem 2 (Taliaf_rro [3]) Th_ probhm

y" + p(x)u -_ ----0

=

ha.s a unique po.sitie¢ sohztiolz y(x) if

_ x-_'p(x) dx < 0_3

wh¢ ,'e a, c e R 1, a > O. Fu,'th_ ,'mo,'e y(oo) < c¢ if a,,d only if fo_ xp(x) dx < c¢.

234



The following theorem describesthe asymptotic behaviorsof the solution.

Theorem 3 (Toli,f(rro [3J)

• If O < y'(oo) < c_ and fl _' x-_+lp(x)dx < oc, a, b > 0 then

ffy(x) = ax + b - a-A(1 + o(1)) (_ - x)_-)'p(,_)d_.

• tf y'(c_) = o _,,_dfF =p(=)d=< o¢, _ > 0 t/,(,,

y(x) = a - a-A(1 + o(1)) (_ - x)p(_)d_.

• (fp, q > 0 arc continuous on [0, oo), lim=__, q(_) = R > 0 and-p(=)

z"+p(x)z -_=0, z'(_)=0;

w" + q(x)w -)' = O, w'(oo) = 0

and f_: xp(x)dx = 00, then lim,_,_:, w/z = Rr_.

Theorem 4 (ffusano-Swanson [7]). The problem

,au = .f(Ixl)_,-_' = 0, =• R =, 0 < A < 1

has an _ntir_ positive solution in R 2 with logarithmic growth at c_ if f(t) > O, t > O,

f(t) • c(o, o¢), .,_

--Je_ t(logt)-X y(t)dt < oo.

A function u(x) is said to be an _ntire solution of (1) if u • C2o_(R n) and u satisfies the equation

pointwise in R ".

Theorem 5 (St_(&er [8]) The problem

Au + p(x)u -_' = 0, x • R", A > O

has an _ntir_ po.__ilivc solution u(x) such that

Cl ___u(x)lxlql"-_l _< c_

for ._om_ ca,c2 and 0 < q < 1 as x--* c_ _f

1. p(x) • C,,_,c(R"), p(x) > 0 for x • Rn\{0}."

2. Cz,,,-,,._;_,t._0 < _< a _,,,_t,t/,,,t_¢(1=1)-<p(=)<-¢(1=1),,'/,_,,¢(t) - maxl=l=, p(x), t • [0, oo),-

3. fa_ t"-a+a("-2)¢(t)dt < c_.
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Methods

In generalthere are two methodsthat arecommonlyusedin proving existenceand uniquenessof
solutions for equationsof type (1), namely Schauder _ fixed point thoc;vm and Barrier Method_.

Since the former is standard we elaborate here only on the latter.

Let fl be a smoothly bounded domain in R _. ¢(x) is said to be an upper (lower) solution of the

problem

Au+f(x,u)=O, xe_ (5)

u Ion= 0

ifA¢+f(x,¢) <0, xEf_, ¢(x)>_0xE0n(¢+f(x,¢) >_0, xE_2,¢(x)<0xE0n).

Theorem 6 (Sattinger [10]). Let ¢1 be an upper solution and ¢2 be a lotver .solution of (5), and let

f be locally Hiilder eot, tinuou.s in fL If el(Z) _> ¢2(Z) in f_, then (5) has a solution u such that

¢_(_)< _(_) < ¢_(_),_ e ft.

In the case when 9/= R _ we say ¢ is an upper (lower) solution of

Au + S(x, u) = 0 (6)

if A¢ + f(x, ¢) _< 0 x E R" (for lower solution, A¢ + f(x, ¢) > 0).

Theorem 7 (Ni [11]). L_I qb_ and ¢2 be an upper and a lower sobdion of equation (6), such that

¢1 >_ ¢2 x E R '_. If f i._ locally Hiilder continuous in x and locally Lip.sch.itz continuous i7_ u, then

(6) has a solution u with ¢2(x) _< u(x) < ¢1(x), x e n n.

An Example.

Consider the problem
u" + ),u - ua = 0, x _ (0, _)
_Z= O, x=0, Tr.

It is easy to show that ¢1(x) = Rx 1/2 for some R large is an upper solution, and ¢2(x) = csin x for

some e small is a lower solution of this problem. Clearly ¢_(x) >_ ¢2(x) for x E [0, 7r]. Thus by the

above theorem there is a solution u(x) such that e sin x < U(x) < Rx _-, x e [0, _r]. Since the problem

is homogeneous we conclude that the problem has at least three solutions, namely, u, -u and the

trivial solution.

MULTIGRID SOLUTION OF THE PROBLEM

In this section we present some numerical results for solving the problem

Au + p(x) u -_ = 0 x E gt

u(z) = 0 z e Off.
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Specifically,wedescribeNewton's method for non-linear systemsto solutionsand multigrid
V - cycle and FMV methods. We have implemented all of these methods for both the one- and

two-dimensional cases, using (respectively) the unit interval and the unit square for f_. In each case

we use a straightforward finite-difference discretization, employing the standard second-order

difference approximation for the second derivative operator• For the one-dimensional problem we

define the grid of (N + 1) points xk = jh, for k = 0, 1,... N, where h is the mesh parameter 1/N.

The second derivative operator is then approximated by

d2u[ Uk-1 -- 2Uk 4- Uk+lxk = h2 + O(h2), (7)

where uk approximates U(Xk). For the non-linear term p(x)u(x) -_ we use the nodal values, Pk u-k >'

Since uo = UN = O, this results in the non-linear system of equations

1

h 2

-2 1

1 -2 1

. •

1

Ul

?22

°

UN-2

72N-1

Pl Ul "x "

P2 u-_ _' ]
I+

PN-2 72N:_-2 JP N- I U-[VA--I

0

0

0

0

(8)

Letting u represent the vector of unknowns, we may write the system as Hu + g(u) = 0, where H

is the tridiagonal matrix and g is the non-linear vector function.

For the two-dimensional case we take the tensor product of the (N + 1)-point grid in the x

direction with an identical (N + 1)-point grid in the y direction, yielding an (N + 1)2-point regular

grid covering the unit square. The difference operator for the two-dimensional problem is

Ox2 + OY_ ] xj,k

Uj-l,k -- 2uj,k + Uj+l,k 4- Uj,k-1 -- 2uj,_¢ 4- ?2j,k+l

h 2 h _
4- O(h2). (9)

Numbering the unknowns lexicographically by lines of constant y, we obtain the nonlinear system

A B

B A B

B A B

B A

721

?22

Wl

w2

+

'/BN_ 2

'tUN_ 1

0I o
= 0

i I
°

j _o
(10)

where here uj denotes the (N - 1)-length vector of unknowns u.i,k for k = 1, 2,..., N - 1

corresponding to the jth grid-fine in the y direction, and A and B are (N - 1) x (N - 1) matrices

1

h _

-4 1

1 -4 1

• °

• o

1 -4

1

1

-4

1
S = R

h _

-1

-1

-1

-1
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The (N - 1)-lengthvectorswj contain the non-linear entries pj,k uj,_k, for k -- 1, 2,..., N - 1. Once

again, we may write the system as Hu + g(u) = O, where H is the block tri-diagonal matrix and g

is the non-linear vector function containing the wj's.

Solution techniques

The classical solution technique for (8) or (10) is to apply Newton's method for non-linear

systems. We write the system as F(u) = O, where F(u) = Hu + g(u). Each step of the iteration

is then given by
u _ u- [Jf(u)]-lF(u)

where the Jacobian of the system is given by

[JR(u)] = H+ D

with H the linear part of F and D a diagonal matrix whose diagonal entries are the derivatives of

the entries of g, for example --._p(x_,k)u_k -1.

Naturally, the Jacobian is not inverted at each step, but rather, we solve the system

[JF(u)]y = -F(u) and then make the correction u _- u + y. We examined two methods for

solving the system at each step, namely LU decomposition and a multigrid FMV cycle.

Newton's method converges quadratically. However, since each step involves inverting a system,

it tends to be very slow. While the use of the FMV solver speeds the method up somewhat, it still

is slower than the techniques we present next. It has long been known ([12], [13]) that on certain

problems non-linear analogs to the classical Jacobi or Gauss-Seidel iteration methods could be

employed with some success. Technically, one sweep of such a method means that for

j = 1, 2,..., N - 1 (or (N - 1) 2 for the two-dimensional problem) one solves, via the scalar

Newton's method, the jth non-linear equation in the system F(u) = 0 for the jth unknown. As in

the linear case, if the old values u are used throughout the sweep this is the Newton-Jacobi method,

while if the updated values are employed as they become available it is the Newton-Gauss-Seidel

method. In practice the jth equation is not actually solved, but rather, a few (one or two) steps of

the scalar Newton's method is performed on each equation in turn.

The Newton-Jacobi and Newton-Gauss-Seidel iterations, however, typically behave in the same

fashion that is observed in their linear counterparts. That is, the iteration generally progresses

rapidly toward a solution with the first few sweeps, but then stalls out so that each additional sweep

produces very little improvement. The reason behind this is the same as that seen in the linear case.

The method stalls after the non-linear relaxation has successfully eliminated the oscillatory portion

of the error, which it eliminates rapidly, but is unable to effectively treat the smooth portion of the

error. This is precisely the difficulty that multigrid methods were devised to overcome.

At the heart of multigrid is the coarse-grid correction [14]. Many common relaxation iterative

relaxation methods for solving a li,_ar problem Au = f have the property that the relaxation

effectively eliminates the high-frequency (oscillatory) components of the error but leave the tow

frequency (smooth) components essentially unaffected. However, because the error is smooth after

the relaxation, it may be represented accurately on a coarser grid, on which it also appears more

oscillatory (relatively). Relaxation on this coarser grid then eliminates the oscillatory components

of the coarse-grid error, which cannot be eliminated on the fine grid. The coarse-grid correction for
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a linear problemmay be written as

u h (-- P"u h + Ihh(A2h)-II_h(fh--Ahp"u h) (11)

where P is the relaxation matrix, v is the number of relaxations, Ihh is a prolongalion or

i,t, _'polatio_ matrix mapping coarse-grid vectors to the fine grid, _h is a r_triction matrix

mapping fine-grid vectors to the coarse grid, and A 2h is a coarse-grid version of the original matrix

A. A crucial feature is that on the coarse grid gt 2h, the problem to be solved is the residual equation

Ae = r, where the residual is defined r = f - Au and e is the error. That is, if u* is the exact

solution, then Ae = A(u* - u) = f - Au = r.

For nonlinear problems the residual equation doesn't hold. Instead, we write the nonlinear

equivalent of the residual equation,

F(u + e) - F(u) = r.

This equation is to be solved on the coarse grid, so we write

FSh(I_hu h + d h) -- FSh(I_hu h) = Iih(I _ -- Fh(u")), (12)

or

FS"( = - +
The coarse-grid correction is then performed by solving (12) for u sh = I2hu h + e2h, and then

making the correction u h .- u h + Ihh(u sh -- I2hhUh). This gives the full approximation scheme [15]

u h ___ p_(u h) + Ihh((FSh)-l(I_h(f h -- Fh(p"(uh))) + F2h(I_hP_(uh))) -- I_hp_(uh)),

where P is a nonlinear relaxation scheme.

For both the linear and nonlinear problems, the solution of the coarse-grid problem is computed

using the same coarse-grid correction scheme as is being employed to solve the fine-grid problem.

This leads to the multigrid V-cycle scheme, which (for the nonlinear problem using FAS) is

described recursively as foUows.

U h ,._ FASVh(uh, fh, Ul, U2)

1. Perform Ul non-linear relaxation sweeps times on Fh(u h) = fu with initial guess u h.

2. If f_h is the coarsest grid, then go to 4. Else:

f" =/ p(fh - + FSh(I   h)
u sh _-- 0

uSh ,._ FASV2h(u_.h, f2h, vl, I-'2).

3. Correct u h _ u h + I_h(u 2h - I_,huh).

4. Perform us non-linear relaxation sweeps times on Fh(u h) = fh with initial guess u h.

An important consideration for this (or any) iterative method is the choice of a good initial

guess. Clearly a better initial guess will reduce the overall effort required to obtain an acceptable

solution. A standard approach in multigrid is to obtain a good initial guess by first solving the

problem on a coarse grid, and then interpolating that solution to the fine-grid for use as an initial

guess. Solving this coarse-grid problem, in turn, will be easier if an initial guess is obtained by first

solving the problem on a still coarser grid. Applying this idea recursively leads the Full Multigrid

F J[(; scheme, which (applied to the non-linear FASI" scheme) may be described as follows:

u h _-- FASFMGh(u h, vl, u2)
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1. If _h is the coarsestgrid, then go to 3. Else:

f2h = i_h(fh_ Fh(uh)) + F2h(I2hhUh )

U2h _ O

u2h _ FASFMG2h(u2h, f2h vl,u2).

2. Correct u h _-- u h + I_h u2h.

3. u h _ FASVh(u h, fh, vl, v2).

Numerical results for multigrid methods

We have implemented the FASV using Newton-Jacobi and Red-black Newton-Gauss-Seidel

iteration schemes. (Our implementation was in Matlab using vector arithmetic. We elected not to

analyse Newton-Gauss-Seidel since it is not vectorizable. We did encode it, however, and found

that the slowness of the for loops overwhelmed the speed of convergence.) Several different choices

for A, p(x) and p(x, y) were used, as were several sets of relaxation parameters.

Table 1 gives some quantitative information regarding the performance of the method,

comparing convergence rates for various choices of parameters. The results shown were obtained

usingthe Red-black Newton-Gauss-Seidel relaxation. We find that for this problem we are able to

obtain convergence rates that are similar to those obtained on the linear elliptic model problems for

which multigrid is best known ([14], [16], [17]). Data for the one-dimensional problem are not

shown, however, they are very similar to the two-dimensional case.

Dimension p(_) A Fine-grid Average V-cycle
size convergence factor

2xy

2 sin(27rx)sin(ry)

x/y2

2 63 x 63

5

8

2 63 x 63

5

8

2 63 x 63

2

8

0.051

0.050

0.078

0.060

0.063

0.104

0.059

0.060

0.086

Table 1

Additionally, we have implemented the FASFMG using Newton-Jacobi and Red-black

Newton-Gauss-Seidel iteration schemes. Again, we find that the performance of the method is

compatible with that found for FMG applied to the linear model problems ( [15], [17]).

CONCLUSIONS

Our survey of existence and uniqueness results has shown the problem

Au+p(x) u -_ = 0 x_f_

24O



is guaranteedto haveunique solutionsunder certain conditions, althoughthesesolutionswill not be
known in closedform. The problem arisesin certain non-Newtonianfluids problems,sothere is
someinterest in actually computing solutions. We have shownthat for homogeneousDirichlet
boundary conditionson the unit interval and the unit square,multigrid methodsappear to provide
an efficientmeansof solution for reasonablechoicesof p(x).

We note, however, that an actual convergence proof for the FAS method would be very difficult

to obtain, in that such proofs normally require that we be able to decompose the space of grid

functions into two operator-subspaces. Error components in one are annihilated by relaxation,

while those in the other subspace are annihilated by coarse-grid correction. While such analysis is

achieved for linear problems, non-linear problems generally can only be treated by linearization

near a solution. In point of fact, the literature is remarkably sparse in the area of founding theory
for the F4S method.

A new technique, called multil_wl projection mcthod.__ (PML) has recently been introduced, [18]

in an effort to provide a unifying, thematic approach to the design of a multilevel solver for a given

problem. The main feature of PML methods is that the only basic choices that must be made

concern the subspaces that will be used in relaxation and coarsening. All other components of the

method, such as interlevel transfers, scaling, coarse-level problems, etc., are determined by

projection between appropriate subspaces. In [18], several prototypical problems axe developed to

illustrate the principals involved. It now appears that the best hope of obtaining a strong founding

theory for multilevel treatment of nonlinear problems may well be through careful and judicious

application of PML, and our future research into solution methods for the problems we have
discussed here will be aimed in that direction.
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